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Abstract

We consider supersymmetry algebras in space—times with arbitrary signature and minimal number
of spinor generators. The interrelation between super Poincaré and super conformal algebras is
elucidated. Minimal super conformal algebras are seen to have as bosonic part a classical semisimple
algebra naturally associated to the spin group. This algebra, thésSphalgebra, depends both
on the dimension and on the signature of space—time. We also consider maximal super conformal
algebras, which are classified by the orthosymplectic algebras. © 2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction

In recent times the extension of Poincaré and conformal superalgebras to orthosymplectic
algebras has been considered with a variety of purposes. In particular the rol€l938sR)
and os|1|64, R) as minimal superalgebras containing the conformal algebras in 10 and 11
dimensions (or the anti de Sitter algebra in 11 and 12 dimensions) has been considered in
view of possible generalizations of M-theory [1-3,7,8,16-18,20,21] and of string theory
to F-theory [9]. The contractions of orthosymplectic algebras are used in the study of BPS
branes [7,12,19,34,35].
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In the present paper we address the more general question of whether such extensions
are possible for space—times with Lorentz group($S©®. Space—times with more than
one time direction have been studied in order to unify duality symmetries of string and M
theories [10,15] and to explore BPS states in two-times physics [6,10]. A theory based on
the gauging of orthosymplectic algebras has been suggested as a non-perturbative definition
of M-theory [16].

Supersymmetric extensions of Poincaré and conformal (or anti de Sitter) algebras in
higher dimensional spaces have been considered in the literature [3,5,7,20,22,23]. Our
analysis embraces all possible dimensions and signatures, so we will make contact with the
previous investigations.

We first consideV = 1 super Poincaré algebras for arbitrary space—time signature and
dimension, extending the usual classification of supersymmetries in any dimension [22].
We then compute the orthosymplectic superalgebras containing $@s a subalgebra of
the symplectic algebra. The embedding we look for is such that the symplectic fundamental
representation is an irreducible spinor representation when restricted to the orthogonal
algebra. Orthosymplectic superalgebras are seen to contain Poincaré supersymmetry, either
as asubalgebra or as a Wigner—Inoni contraction. This generalizes the fact that the M-theory
superalgebra can be seen, either as a contraction ¢1|82pR) or as a subalgebra of
osp(1/64, R).

The paper is organized as follows. In Section 2 we review properties of spinors and
Clifford algebras for arbitrary signature and dimension and set up the notation for the rest
of the paper. We also provide the symmetry properties of the morphisms which allow us
the classification of space—time superalgebras. In Sections 3 and 4 Poincaré and conformal
supersymmetry are studied in a uniform way. In Section 5 the orthosymplectic algebras
and their contractions to centrally extended super Poincaré and super translation algebras
are studied. In Section 6 we introduce the concept of orthogonal symplectic and linear
spinors which, together with the reality properties allows us to associate a real simple
algebra from the classical series to the Spin group (called(§pinalgebra). In Section
7 we show that the minimal super conformal algebras are supersymmetric extensions of
the Spin(V)-algebra. A maximal superalgebra with the same number of odd generators is
always an orthosymplectic algebra. In Section 8 we summarize our results and retrieve the
examples of Minkowskian signature.

2. Propertiesof spinorsof SQ(V)

Let V be a real vector space of dimensibn= s + ¢t and{v, } a basis of it. OrV there
is a non-degenerate symmetric bilinear form which in the basis is given by the matrix

Ny = diag(+, ... (stimes ..., 4+, —, ... (ttimeg ..., —).

We consider the group Sqil), the unique double covering of the connected compo-
nent of S@s, r) and its spinor representations. A spinor representation of(8pfnis
an irreducible complex representation whose highest weights are the fundamental weights
corresponding to the right extreme nodes in the Dynkin diagram. These do not descend to
representations of SO). A spinor type representation is any irreducible representation
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that does not descend to 8. A spinor representation of Sgiv) over the reals is an
irreducible representation over the reals whose complexification is a direct sum of spin
representations.

Two parameters, the signatysenod(8) and the dimensio® mod(8) classify the prop-
erties of the spinor representation. Through this paper we will use the following notation:

p=s—t=po+ 8n, D=s+1t= Do+ 8p,
wherepg, Do =0,...,7.Wesetn = p —n, SO
s=3(D+p)=3(po+ Do) +8n+4m,  t=3(D—p)=3(Do— po)+4m.

The signatur@ mod(8) determines if the spinor representations are i@glquaternionic
(H) or complex C) type.

The dimensiorD mod(8) determines the nature of the Spif)-morphisms of the spinor
representatiosS. Letg € Spin(V) and letX(g) : S — SandL(g) : V — V be the spinor
and vector representationsiof Spin(V), respectively. Then a map

A:SQ8— Ak,
whereAF = A¥(V) are thek-forms onV, is a Spir{V)-morphism if
A(Z(2)51® Z(g)s2) = L*(g)A(s1 ® 52).

In the next subsections we analyze the properties of spinors for arbitreaies D.
2.1. Spinorsand Clifford algebras

We denote by (s, t) the Clifford algebra associated ¥andp. It is defined as the real
associative algebra generated by the symBol§, with relations

o, + I, =2n,1, (1)

and withZ the unit element.

LetC(p) be the algebra g x p complex matrices. The complexification of the Clifford
algebral(s, 1) ~ C(z, 5)C, is isomorphic toaC(2P/2) for D even and taC(2(P~1/2) g
C(2P-D/2y for D odd. The real Clifford algebras are isomorphic to certain matrix algebras.
They are classified by = s — r mod(8) (see [13,14,24-27]). Notice th&t and p have
always the same parity. We list the results in Table 1, where we have used the following
notation:2 x E = E & E, R(p) andC(p) mean the algebra gf x p matrices with entries
in the real or complex numbers, respectivélyp) instead means the set pfx p complex

Table 1
Clifford algebras
p even p odd
0 2 4 6 1 3 5 7

C(S,l‘) R(ZD/Z) R(ZD/Z) H(2D/271) H(2D/271) ZR(2(D71)/2) (C(Z(Dfl)/Z) ZH(Z(Dfl)/Z) (C(Z(Dfl)/Z)
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matrices satisfying the quaternionic condition,
M*=-QM$2, (2)

where 2 is the symplectic metric. This means thais even and tha¥/ can be written

as a%p X %p matrix whose entries are quaternionic. Using the two-dimensional complex
representation of the quaternions we recover the previous description. We stress that all the
algebras appearing in Table 1 are taken as real algebras. The real dimension of the Clifford
algebrais 2 in all cases.

We consider a representation of the Clifford algebra in a vector spadedimension
2D/Zfor D even and 2?~P/2 for D odd, as given by Table 1. This representation is faithful
except forp = 1, 5mod8). We will denote byy,, the images of the generataly by this
representation. From Table 1 one can see also when these matrices are real, quaternionic or
just complex.S is then a real, quaternionic or complex vector space.

It is clear that in general(s, t) andC(z, s) are not isomorphic. However, the Clifford
algebras have a natur@} grading, being the degree 6, equal to 1. The relations (1) are
homogeneous in this degree. The even (degree zerajpérts) is a subalgebra generated
by products of an even number of elements of the bEsgidt is then true tha€* (s, r) ~
C*(t,s). The Lorentz generators are products of two elements, so it follows trivially that
Sq(s, t) ~s0(t, s). This will be important since we are in fact interested in the irreducible
representations of Spiw).

For D odd the representatiof of the Clifford algebra is irreducible under Spin). It
is a spinor representation. Foreven, it splits into two irreducible spinor representations
(called Weyl or chiral spinorsy = S @ S~ of half the dimension.

We consider first the odd cases. Since for our purposes|pgllys important, we will
have up to two possible Clifford algebras in each case.

lpo| = 1. The Clifford algebras are the onesmf= 1, 7. We see thgt = 1 gives directly
a real representation of real dimensidR2D/2,

|po| = 3. The two possibilities argg = 3, 5. pp = 5 gives a quaternionic representation
of complex dimension@-1/2,

lpo| = 5. As the casgog| = 3.

lpo| = 7. As the caséog| = 1.

We consider now the even cases.

|po| = 0. There is only one possibilityjp = 0. The representation is real of dimension
2P/2 The projections o™ are also real. This is because the projectors are

PE =11+ ypi1),

whereypi1 = y1--- yp, which is also real.
|pol = 2. The two possibilities argg = 2, 6. p = 2 has a real representation, ane- 6

has a quaternionic representation. But the projectors in each case are neither real nor
quaternionic,

P* =31 +iyp).

so the representatiors are just complex.
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Table 2

Properties of spinors

po (odd) Real dingS) Reality po (even) Real dins) Reality
1 2(1)—1)/2 R 0 2D/271 R

3 2(D+l)/2 H 2 2D/2 C

5 2(D+l)/2 H 4 2D/2 H

7 2AP=1/2 R 6 2b/2 C

lpol = 4. There is only one possibilityyg = 4. The representation is quaternionic of
complex dimension2/2, The projectors are

P* =31+ ypi),

which is quaternionic, s6* are also quaternionic representations.
|po| = 6. As the casé¢o| = 2.

In Table 2 we summarize all these properties together with the real dimension of the
spinor representation.

Space—time supersymmetry algebras are real superalgebras. The odd generators are in
spinor representations of the Lorentz group, so we need to use real spinor representations.
For each case, real quaternionic or complex, we use anirreducible real spinor representation,
with the dimension indicated in Table 2.

Real case, pg = 0, 1, 7. LetS be afinite dimensional complex vector space. A conjugation
o is aC-antilinear mag : § — S,

o(asy + bsp) =a*o(s1) +b*o(s2), a,beC, s5; €8,

such thats? = 7. Let S be the vector space of an irreducible spinor representation of
Spin(V). In this case there is a conjugatierthat commutes with Spiiv),

o(gs) =go(s), g e SpinV),

and then SpitV) acts on the real vector spad€ = {s € S|o(s) = s}. The spinor
representation is an irreducible representation of §pe

Quaternionic case, po = 3,4, 5. A pseudoconjugation is an antilinear map.$such
thato? = —Z. S has necessarily even dimension. If we have a real Lie algebra with an
irreducible representation, one can prove that it is of quaternionic type if and only if there
exists a pseudoconjugation commuting with the action of the Lie algebra. So a quaternionic
representation of Sp(iv) has a pseudoconjugatien The conditiono (gs) = go (s) is
equivalent, in a certain basis §f~ C%*, to (2).

Let S be a quaternionic representation of Spin. We takeS ~ S @ S ~ S ® W, with
W = C2.0nS ® W we can define a conjugatiéh= o ® a9, with op a pseudoconjugation
onW. In a basis oW we can chooseg(w) = Qw*, with

(%))
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The group SW2) = USp(2) commutes witlrg, So we have that Spiiv ) ® SU(2) commutes
with ¢ and has a real representation on

§9 ={re 8|6 (r) =t}

We note at this point that there is a smaller group} @p~ SO(2) ~ U(1) contained in
SU(2). It will play a role in the construction of superalgebras.

Complex case, po = 2,6. The representation of the Clifford algelfés,r) on S =
St @ S~ for pg = 2 is real. This means that it has a conjugation which commutes with
the action ofC(s, r). For pg = 6 the Clifford algebra is quaternionic, which means that it
has a pseudoconjugation. Nevertheless, the orthogonal groups Spiis isomorphic to
Spin(z, s), so we can use the Clifford algelfé, s) which haspg = 2 and a conjugation.

We conclude then that fgrip = 2, 6 there is a conjugatiosn on S commuting with the
action of SpirgV). If follows that there is a representation of S@it) on the real vector
spaces®.

In particular, we have that(S*) = SF. We can define an action of(l) on S,

st @s™) =d%T ey,

This action commutes also with, so it is defined or§°.
The groups S2) and U(1) appearing in the quaternionic and complex case, respectively,
are referred to as R-symmetry groups.

2.2. Spin(V)-morphisms

The symmetry properties of the Spin)-morphisms
SRS — Ak

depend oD mod(8), and are listed in Table 3. We putl if the morphism is antisymmetric,
+1ifitis symmetric and leave it blank if no symmetry properties can be defined. Notice that
one can restrict to 2k + 1 < D sinceA* ~ AP=5 are isomorphic as Spii )-modules.

This table can be obtained exactly as Table 1.5.1 in [28], using the formalism of [28].

Table 3
Properties of morphisms
D k even k odd

Morphism Symmetry Morphism Symmetry
0 5t ® §* — Ak (=1kk=D/2 5* ® ST — Ak
1 S®S — Ak (_1)k(kfl)/2 S®S — Ak (_1)k(kfl)/2
2 5t @ ST > Ak 5% ® 5% - Ak (—Dkk=D/2
3 S®S — Ak —(—rk-D/2 S®S — A (—=1ktk=D/2
4 §* @ 5% — Ak —(—1k=D/2 §* @ ST — Ak
5 S®S — Ak —(=1)kk=D/2 S®S — Ak —(=Dkk-D/2
6 5t @ ST — Ak St st —» At —(—Dkk-D/2
7 S®S —> Ak (=1kk=D/2 S®S — Ak (= Dkk-D/2
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Let SV be the dual space of and letC1 : S — SV be the map intertwining two
equivalent representations of the Clifford algebra, namely

CityuCy=y, for D =1mod4), C-ty,C_ =—y, for D =3mod4),
Ci'yuCi==%y, forDeven

Notice thatC. defines a map ® S — C. This map has the property of being a Spin-
morphism, so its symmetry properties can be deduced from Table 3. In terms of a basis of
S, {eq}, and its dual{e;}, both the morphism and the intertwining map are expressed as a
matrix C+q4 called the charge conjugation matrix [5,13,14].

In the even case§ = ST @ S~. For D = 0, 4 the morphisms§ ® S — C are block
diagonal (S* ® S* — (), so the charge conjugation matrices must be both symmetric or
both antisymmetric. Fob = 2, 6 the morphisms are off diagona¥{ ® S¥ — C), so
the charge conjugation matrices can have simultaneously different symmetry properties. In
fact, we have

D=0mod8), CI =Cy, D =2mod8), CI =+Cy,
D=4mod8), Cl=-Cy, D=6mod8), CL=7C..

For D odd we have

D=1mod8), CIl=Cj, D=3mod8), C'=-C_,
D=5mod8), Cl=-Cs, D=7mod8), C!=cC._.

For arbitraryk we have that the gamma matrices

1
[/’L e s L ] _ i Ms oy Ms
yrrt =g D sigls)y - pts®

seSk

are amag — A* ® S. Composing it withZ ® C we obtain a mag — A* ® SV, which
defines amap ® S — AX. This map is a Spi(¥ )-morphism, and in the same basis as
before is given by

Pl ) = S sigle) e Py ey By

seSk

A note on Majorana spinors. Consider the orthogonal group &0r). For pg = 1, 7 the
spinors in the representaticti, of dimension 22~Y/2  are called Majorana spinors. For
po = 0 the spinors iS*)? (of dimension 2/2-1) are called Majorana—Weyl spinors. For
po = 2, 6 the space of Majorana spinors(ist @ S~)?, of dimension 2/2.

For pp = 3, 5 the quaternionic spinors ifiare called pseudoMajorana spinors. pee
4, the Weyl spinors are themselves quaternionic and they are called pseudoMajorana—Weyl
spinors.

The space of Majorana spinors is a real vector space and the space of pseudoMajorana
spinors is a quaternionic vector space [4,5,13,14].



108 R. D’Auria et al./ Journal of Geometry and Physics 40 (2001) 101-129

3. Poincar é super symmetry

The Poincaré group of a spakef signaturds, 1) is the group IS, 1) = SO(s, 1)OT* .
We consider super Poincaré algebras with non-extended supersymmetni). The anti-
commutator of the odd generators (spinor charges) is in the representatiqls 8y§).
One can decompose it into irreducible representations under the grou@/spihis a
fact that only antisymmetric tensor representations will appear. Poincaré supersymmetry
requires the presence of the vector representation in this decomposition to accommodate
the momentaP,,. Another way of expressing this is by saying that there must be a morphism

S®S =V,

which is symmetric. This can be read from Table 3. In the table, complex representations are
considered. Since the Poincaré superalgebra is a real superalgebra, care should be exercised
when interpreting it in the different cases of real, quaternionic and complex spinors. We
will deal separately with these cases.

Real case. The most general form of the anticommutator of two spinor generators is

(Qar Qs = Y v ™ 20, g, ©)
k

whereZ;,,...,,,] are even generators. In the sum there appear only the terms that are sym-
metric with respect ta. and; we indicate it by(as).

Ifthe termy(’;ﬁ) appears, then a super Poincaré algebra exists. The restbfgeerators
can be taken to commute among themselves and with the odd generators and transform
appropriately with the Lorentz generators. We have then the maximal “central extehsion”
of the super Poincaré algebra.

For po = 0, since the Weyl spinors are real one can have a chiral superalgebra. The vector
representation should appear then in the symmetric productSym® S*). This happens
only for Dy = 2 (0 and D have the same parity). If we consider non-chiral superalgebras,
where bothS* are present, also the valuBg = 0, 4 are allowed.

Forpo = 1,7, we haveDg = 1, 3.

Quaternionic case. The most general anticommutator of two spinor charges is

i i _ [wa-mi] -0 ij (e 1 ij
(Qr 031 = D el " Zhoud @ + D Vo ™ Haaoosnt - @)
k k

o-}J are the (symmetric) Pauli matrices,j = 1,2, 1 = 1, 2, 3. (We have multiplied them
by the invariant antisymmetric metrie"). If we demand that the momentuhy is a singlet
under the full R-symmetry group SB) >~ Usp(2), then theyo‘f must be antisymmetric
and the momentum appears in the first term (singlet) of the r.h.s. of (4).

For po = 3,5, this happens ifDg = 5, 7. The only even case igg = 4. A chiral
superalgebra exists fd@y = 6, while for Do = 0, 4 one can have non-chiral superalgebras.

1 Except fork = 0, the generatorg are not central elements, since they do not commute with the elements of
the Lorentz group. They are central only in the super translation algebra. It is nevertheless customary to call them
“central charges”.
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If we restrict the R-symmetry group to 3Q@), there is also an invariant symmetric
metric,8'. In the anticommutator (4) we can consider terms like

[
Zy(fﬁl) Z[m 18 !

Theyo’[% must be symmetric to appear in such term. ko= 3, 5, this happensibp = 1, 3.
For pg = 4 andDg = 2 a chiral superalgebra exists.

For pp = 4 andDg = 0, 4 one can have non chiral superalgebras.

Complex case. This is the case fasg = 2, 6. The spinor charges are in the representation
St S~ and we will denote them b§Q.,, Q). Inthe anticommutator there are three pieces,

{Qu, Op} {Qa, Qg {Qu, Qal,

and it is clear that only the last one is invariant under the R-symmetry grélip Ghen
there must be a morphism
stes™ — AL

This happens in the casé&g = 0, 4.
We summarize these results in Table 4. The values,of are such that, r > 0. We
mark with “t” the non-chiral superalgebras. We note that for standard space—time signature,

Table 4

Poincaé groups with supersymmetric extensions

(Do, po) ISO(s, 1)

(2,0) ISQ1+ 8n + 4m, 1+ 4m)
©,2) ISQL + 81 + 4m, —1 + 4m)
4,2) ISO3+ 8n + 4m, 1+ 4m)
2, 4) 1ISQ3 + 8n + 4m, —1 + 4m)
(6, 4) ISO5+ 8n + 4m, 1+ 4m)
(0, 6) 1ISQ3 + 8n + 4m, —3 + 4m)
(4, 6) 1ISQ9 + 8n + 4m, 3+ 4m)
©, o) ISO(8n + 4m, 4m)

©, &) ISO(2 + 8 + 4m, —2 + 4m)
@, o) ISO(2 + 8n + 4m., 2+ 4m)
@ o ISO(4 + 81 -+ 4m, 4m)

1, 1) ISO(L + 81 + 4m, 4m)
1,3) 1SQ2 + 8n + 4m, —1 + 4m)
3,3) ISQ3 + 8n + 4m, 4m)

1,5) 1ISQ3 + 8n + 4m, —1 + 4m)
(3,5) ISO4 + 8 + 4m, —1 + 4m)
(3, 1) ISQ2 + 81 + 4m, 1+ 4m)
(5,3) 1ISQ4 + 8n + 4m, 1+ 4m)
7. 3) ISQ5 + 8 + 4m, 2+ 4m)
(5, 5) ISQ(5 + 8n + 4m, 4m)
(7,5) ISQ6 + 81 + 4m, 1 + 4m)
1,7 IS4 + 8n + 4m, —3 + 4m)

@7 ISQ5 + 8n + 4m, —2 + 4m)
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ISO(D — 1,1) = ISO(p + 1 + 8n, 1), all super Poincaré algebras are presentiioe=
0,...,7mod8).

4. Conformal supersymmetry

The conformal group of a vector spateof signature(s — 1, — 1) is the group of
coordinate transformations that leave the metric invariant up to a scale change. This group
is isomorphic to S@, ¢), a simple group, fo» > 3. The Poincaré group IS@ ¢) is
a subgroup of the conformal group. In a space with the standard Minkowski signature
(s — 1, 1), the conformal group is the simple group S(®). It is also the anti de Sitter
group in dimension + 1.

A simple superalgebrad = Ag & A; satisfies necessarily

{A1, A1} = Ao. %)

We look for minimal simple superalgebras (with minimal number of even generators) con-
taining space—time conformal symmetry in its even part. The odd generators are in a spinor
representatioly of Spin(s, ¢), and all the even generators should appear in the r.h.s. of the
anticommutator of the spinor charges, which is in the §ym® S) representation. As we

did in the case of Poincaré supersymmetry, we decompose it with respect o, Bpifhe
orthogonal generators are in the antisymmetric 2-fold representation, so we should look for
morphisms

S®S — A2

with the appropriate symmetry properties for each signature and dimension. The discussion
is as for Poincaré supersymmetry, but witk= 2 in Table 3.

For the real case the matrices should be symmetric. We pgvwe O with Do = 4 and
po = 1, 7 with Dg = 3, 5. For the quaternionic case the matrices should be antisymmetric
if we demand invariance under the &) R-symmetry. We havgo = 4 with Do = 8
andpg = 3,5 with Dg = 1, 7. If the R-symmetry is restricted to 3@) the singlet iss",
while the SG(2) generator is2!l. Then we haveg = 4 with Dy = 4 andpg = 3, 5 with
Do =3,5.

Forthe complex case, if we demand that the orthogonal generators are singletsdngder U
the matrices should be 1 ® S, which is invariant under the (1) R-symmetry group. We
havepg = 2, 6with Dg = 2, 6. Forpg = 0andDg = 2, 6 we have a superalgebra containing
the orthogonal group in its even part provided we take two spinors, gfieamd the other in
S~. po = 4andDg = 2, 6is a similar case, but the spinorss# should have also an )
index. We may also consider the caggs= 2, 6 andDg = 4 where the 1) invariance is
not present. Then, the orthogonal generators are in the anticommutatos Sgnst).

When the morphism is such that the orthogonal generators are in the r.h.s. of the anti-
commutator of the odd generators, the biggest simple group that one can consider is the one
generated by all the symmetric matrices. This is the symplectic gro@a SR) where 2 is
the real dimension of the spinor charge. As we will see there is a superalgebra with bosonic
part sg2n, R), one of the orthosymplectic algebras. In the quaternionic case, we observe
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Table 5
Orthogonal groups and their symplectic embeddings
(Do, po) SQ(s, 1) Sp(2n, R)
©.9 SQ2+ 8n + 4m, —2+ 4m) x SU(2) Sp4rtm)
@ O)T SO(1+ 8n + 4m, 1+ 4m) Sp(21+4("+”’))
2,2 SQ2 + 8n + 4m, 4m) x U(1) Sp(2L+4ntm)
(2, 4)T SO(3 + 8n + 4m, —1 + 4m) x SU(2) Sp(R2+artm))
(2.6) SQ4+ 8n + 4m, —2 + 4m) x U(1) Sp(RLHAem)
(4,0) SQ2+ 81+ 4m, 2+ 4m) Sp(2Lt+Awm+m)y
4,2 SQB+ 8n + 4m, 1+ 4m) Sp(22+Artm))
4.4 SQ4 + 8n + 4m, 4m) x SO (2) Sp(22+4intm)
(4, 6) SQ5+8n +4m, —1+ 4m) Sp(22+An+m))
.07 SO(3 + 8n + 4m, 3+ 4m) Sp(RL+aetm)
(6,2) SQ4 + 8n + 4m, 2+ 4m) x U(1) Sp(23Hmtm)
© 4 SO5 + 81 + 4m, 1+ 4m) x SU(2) Sp(2+H4mm)
(6r 6) SC(G +8n + 4m, 4m) X U(l) SFX23+4(H+W))
3 SQ2+ 8n + 4m, —1+ 4m) x SU(2) Sp(2b+Amm)
1.5) SQ3+ 8n + 4m, —2 + 4m) x SU(2) Sp(RL+aem)
(3,1 SQ2+ 8n + 4m, 1+ 4m) Sp(25+4tm))
(3.3) SQ3 4+ 8n + 4m, 4m) x SO*(2) Sp(22+4ntm))
(3! 5) SQ4+ 8n+4m, -2+ 4m) x SO (2) 5“22+4(n+m))
(3.7 SQA5+ 8n + 4m, —2 + 4m) Sp(2Lt+Awm+m)y
(5,1) SQ3+ 8n + 4m, 2+ 4m) Sp(22+4+m))
(5.3) SQ4 + 81 + 4m, 2 + 4m) x SO*(2) Sp(23+4mm)
(5,5) SA5+ 8n + 4m, 4m) x SO*(2) Sp23+4m+m)y
(6.7 SQ6 -+ 81 + 4m, —1+ 4m) Sp22+4em))
(7,3) SQ5 + 8n + 4m, 2+ 4m) x SU2) Sp(2+4+my)
(7,5) SQ6 + 81 + 4m, 1+ 4m) x SU(2) Sp(24+Hmtm)

that if the morphism to12 is antisymmetric (symmetric), then the morphismi®= C is

symmetric (antisymmetric). It follows from (4) that in this case the orthogonal group times
SU(2) is a subgroup of the symplectic group. In the complex case the orthogonal group
will come multiplied by U1) (unlessDg = 4). In these cases, $P) and U1) are groups
of automorphisms of the supersymmetry algebra.

The results are summarized in Table 5 with the same conventions as in Table 4. We mark
with “t” the cases that lead to non-chiral superalgebras.

The case of S, 2) would naively correspond to an embedding i(&R). This is
obviously not true and the reason is th&2(®) is not simple, so property (5) does not hold.
In fact, since S@, 2) ~ SO(2, 1) x SO(2, 1), we have that S, R) ~ SO(2, 1), one of
the simple factors.

5. Theorthosymplectic algebra and space-time super symmetry
We recall here the definition of the orthosymplectic superalgebr@g2p, R)[11,17,30].

Consider theZp-graded vector spacé = V & H, with dim(V) = N and dimH) =
2p. EndE) is a super Lie algebra in the usual way, with the even part(Engl =
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End(V) @ End(H). In terms of an homogeneous basis, an element of End a real
matrix

ANXN B2p><N
CN><2p D2p><2p .
Then

A O 0 B
End(E)o=<O D>, End(E)1=<C 0)

with the usual bracket
[a,b] = ab— (—1)8@W¢Ppa, 4, b e ENAE). (6)

(g = 0, 1 will denote the grading on both spacé&sand EndE)).
Consider orE anon-degenerate bilinear fofrsuch that (u, v) = (—1)?“WP® F (v, u)
andF (u, v) = 0 foru € Eg, v € E1. Then, there exists an homogeneous basis where

Fe 2NxN 0
0 QprZp

2 _ T _ T _
‘QZ[JXZp =-1, ‘QZ[JXZp - _‘QZPXZP’ ‘QNXN = 2NxN-

with

The orthosymplectic algebra agp|2p, R) is the set of realN + 2p) x (N + 2p)
matricesa satisfying

a'F+Fa=0

with bracket (6). The even partis@d) @ sp(2p), and the generators of the odd part are in
the fundamental representatioM, 2p). It is a simple superalgebra, so in particular,

{0Sp(N|2p, R)1, 0SE(N|2p, R)1} = sa(N) @ sp(2p, R). (7)

Given the results of Section 4, the orthosymplectic superalgebras are the supersymmetric
extensions of the conformal group of space—time. We fdke 1, and 2 according to
Table 5. The defining representation of the symplectic group is the corresponding spinor
representation of the orthogonal subgroup.

The symplectic algebra 6pp) has a maximal subalgebra sl R) & so(1, 1). The fun-
damental representation of(@p) decomposes as

2 Hem. -1
p5|(I’sR)—®)so(1,1)(p 3) @ (P, —3)

wherep’ is the dual representation po The decomposition of the adjoint representation is

Sym(2p ® 2p) o Erasal. 1)(Sym(p ® p), 1) & (adi,), 0) & (1,0

®(Sym(p’ ® p), —1).
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This defines an €4, 1), Lie algebra grading of = sp(2p)
Lsp= ﬁg—pl ® Egp ® Es_pl’ (8)

where the superindices are thgkdl) charges. The direct sums here are understood as
vector space sums, not as Lie algebra sums. By the properties of the gr@;ﬁmj}dﬁgpl
are Abelian subalgebras.

The orthogonal group S@, ¢) contains as a subgroup 180- 1,¢ — 1). In the alge-
bra, the adjoint of s@, r) contains a singlet under $O— 1, r — 1). The corresponding
so(1, 1)-grading is like (8), and in fact they coincide when the orthogonal algebra is seen
as a subalgebra of the symplectic one. For the orthogonal case we have

L =1(P), Li=sas—-Lr-D@od, D, Li1={(K.},
whereP, andK, are s@s — 1, ¢ — 1) vectors satisfying
[P/L5 PU] = [K[I.’ KV] = 0

Eg contains the orthogonal generatds,, € so(s — 1,7 — 1) and the dilatatiorD. P,
can be identified with the momenta of I&0- 1, r — 1), andK, are the conformal boost
generators.

When we consider the supersymmetric extension g2gpas the orthosymplectic al-
gebra osfl|2p, R), the previous grading is extended and we have the decomposition

1/2 -1/2 _
EOSD = E:)rslp@ E?J_SF{ ® Egsp® EOSD/ ® Eoslpv

Where,Coislp/2 contains the odd generators of the superalgebra, which are in the fundamental
representation of $@p). This representation decomposes as

2 P +Hep -3,

—
sl(p,R)®sa(1,1)

SO
1/2 —(1/2
Lo =10a), Lo’ ={Sa}-

It is important to remark that since the signatyrés the same for 9@, ) and sa@s —
1, + — 1), the spinors have the same reality properties. Furthermore, the irreducible spinor of
Sq(s, t) C sp(2p) decomposes into two irreducible spinors ofsse 1, r — 1) C sl(p) with
opposite grading. These are usually denoted agithadsS spinors of the super conformal
algebra.

WhenD = s + ¢ is even, the irreducible spind® of so(s, 1) decomposes into two
spinors of s@s — 1, r — 1) of opposite chiralities,

Sp— 0p 2®Sp 5

(the superindex here indicates chirality, not théls)-grading). Since one has the mor-
phism [28]

+
0p2®V = Sf_,,
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then the commutator of a charge of a certain chirality vkih or P, must give a charge
with the opposite chirality.

The subalgebr&*! @ £+1/2 is a nilpotent subalgebra of ogi2p, R), which in fact
is the maximal central extension of the super translation algebra. The full set of central
charges transforms, therefore, in the symmetric representatioriQffgl while the odd
charges transform in the fundamental representation of the same group. We observe that the
orthosymplectic algebra has twice the number of odd generators than the super Poincaré
algebra.

5.1. Contractions of the orthosymplectic algebra

The Poincaré algebra can also be obtained from an orthogonal algebra by an Inoni—Wigner
contraction

so(s,r+1) — iso(s, 1),

contraction

as a generalization of the well-known case of the anti-de-Sitter grofp-i dimensions

AdSp_1 =SOD —2,2) — ISOD —2,1).

contraction

In fact, the same Poincaré algebra can be obtained also by the contraction

sos +1,t) — is0(s, t).
contraction

The contraction is defined as follows. L&g be the generators of &0¢ + 1) or
sos+1,7),A,B=1...,D,D =s+r+1 Letu,v=1,..., D and consider the
decompositiorfj,.y, Tj,.p/). We definel;, = (1/e)Tj,, p and take the limie — 0 in the
algebra while keeping finite the generatdts,, 7j,., p/;- The result is the algebra of the
Poincaré group ISQ, 1) with P, = Tj,. p1.

We consider now the following contraction of the orthosymplectic superalgebra. The
generators of the bosonic subalgela, ..., appear in the r.h.s. of (9)

(Qa. 08} = Y Vi "™ 7. mi=1.....D. 9)
k
(Only they’s with the appropriate symmetry will appear.) We set

1 1
Zlpgu] = EZ[Ml“'Hk]’ Q- %Q'

We obtain a superalgebra with bosonic part totally Abelian.

Consider a symplectic group containing an orthogonal group in dimedsiemd signa-
ture p according to Table 5, and the contraction of the orthosymplectic algebra as explained
above. We can decompose the odd and even generators with respect to the orthogonal sub-
group(D —1, p+1) or (D —1, p—1). InterpretingZ[,, p) as the momentum in dimension
D — 1 (u taken only from 1 taD — 1), the algebra is then seen to be the maximal central
extension of the super translation algebrafin— 1, p + 1).
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If all the symplectic generators are contracted except the generators of the orthogonal
group,

Z[MV]HZ[ILLv], ,bL,l)Zl,...,D—l,

then one obtains a super Poincaré algebra. It has “central extension”, but it is not maximal
since the generators of the orthogonal grougsS9, Z[,,,], are not commuting and do not
appear in the r.h.s. of (9).

The spinor representations of the orthogonal groupdng) behave differently when
decomposing with respect to the orthogonal subgrou@in-(1, p + 1), depending op.
For the complex spinors we have that for— D — 1

St > Sp-1, Deven  Sp> Sh @S, ,, Dodd

Over the reals, the representation may or may not remain irreducible. We make the analysis
first for (D — 1, p + 1). The representation remains irreducible fgr= 0, 1, 2, 4 while

for po = 3,5, 6, 7 it splits into two spinor representations, so the super Poincaré algebra
obtained hasv = 2 supersymmetry. More precisely, fo§ = 3, 7 we get two spinors of
different chirality, so we have (1, 1) supersymmetry, while foe= 5,6 we getN = 2
supersymmetry.

The orthogonal group forl§ — 1, p — 1) is isomorphic to the orthogonal group for
(D — 1, —p + 1), so the decomposition of the representations updes p — 1 can be
formulated as a decomposition of the tyge— o’ + 1 with p’ = —p. Itis then enough to
write the decompositions — p + 1. We give them in Table 6.

We can now apply these decompositions to the list given in Table 5. The super Poincaré
algebra for(D, p) could be in principle obtained by contraction from two different or-
thosymplectic algebras, the ones corresponding to orthogonal gt@ups1, p + 1) or
(D + 1, p — 1). However, it may happen that no one of them exists, ag po) =
(0,0), (4, 4) or that only one exists, as fddg = 3,7, po = 3,5andDg = 0, 2, 4, 6,
po = 2, 6. The rest have both possibilities.

The orthosymplectic algebra correspondingn p) can be contracted in two different
ways, as the bosonic orthogonal algebra. However these contractions do not lead necessarily
to one of the Poincaré superalgebras listed in Table 4, since we imposed some restrictions
on the algebras appearing in that table.

Table 6

Decomposition of spinor&, D) — (p+1, D — 1)

00 (p,D) > (p+1,D-1 Reducibility
0 St — S Irreducible
1 S — S¢ @S¢ Irreducible
2 5S¢ — Su Irreducible
3 Su — Sf @ Sy Reducible
4 S — Su Irreducible
5 Sy — SE @ Sz Reducible
6 5S¢ — Sk @ S Reducible
7 Sg — S @ Sy Reducible




116 R. D’Auria et al./ Journal of Geometry and Physics 40 (2001) 101-129

Let us note that in particular, the Poincaré algebras corresponding to the physically inter-
esting casep = D — 2, are all obtained by contraction. Fbr= 8, 9 the algebra obtained
has extended\ = 2) supersymmetry. FaP = 6, 10 the algebras obtained are non-chiral.

6. Orthogonal, symplectic and linear spinors

We consider now morphisms [29,39]
S®S— A%~C.

If a morphism of this kind exists, it is unique up to a multiplicative factor. The vector space
of the spinor representation has then a bilinear form invariant undei('8pih.ooking

at Table 3, one can see that this morphism exists excepbdore 2, 6, where instead a
morphism

ST sT — C

occurs.

We shall call a spinor representation orthogonal if it has a symmetric, invariant bilinear
form. This happens foPg = 0, 1, 7 and SpiiV) (complexification of SpiaV)) is then a
subgroup of the complex orthogonal groupQC), wheren is the dimension of the spinor
representation (Weyl spinors foreven). The generators of@ C) aren x n antisymmetric
matrices. These are obtained in terms of the morphisms

S®S — Ak,

which are antisymmetric. This gives the decomposition of the adjoint representation of
O(n, C) under the subgroup Spik)C. In particular, fork = 2 one obtains the generators
of Spin(V)C.

A spinor representation is called symplectic if it has an antisymmetric, invariant bilin-
ear form. This is the case fdpy = 3,4, 5. SpinV)C is a subgroup of the symplectic
group Sggi2p, C), where % is the dimension of the spinor representation. The Lie algebra
sp(2p, C) is formed by all the symmetric matrices, so it is given in terms of the morphisms
S ® S — AF which are symmetric. The generators of SpinC correspond td& = 2 and
are symmetric matrices.

For Dy = 2, 6 one has an invariant morphism

B:StT®S™ — C.

The representationst and S~ are the contragradient (or dual) of one another. The spin
representations extend to representations of the linear group, Gl, which leaves the
pairing B invariant. These spinors are called linear. $piyf- is a subgroup of the simple
factor SL(n, C).

These properties depend exclusively on the dimension. When combined with the reality
properties, which depend gn one obtains real groups embedded in&@), Spi2p, C)
and GL(n, C) which have an action on the space of the real spinor represens&tiorhe
real groups contain as a subgroup $pin
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We need first some general facts about real forms of simple Lie algebras. het
a complex vector space of dimensiarwhich carries an irreducible representation of a
complex Lie algebraj. Let G be the complex Lie group associateddolLet o be a
conjugation or a pseudoconjugation Srsuch thair Xo 1 € G for all X € G. Then the
map

X+ X =0Xo !
is a conjugation ofj. We shall write
G° ={X € G|X° = X}.

G° is areal form ofG. If T = hoh™1, withh € G, G* = hG°h~1. G° = G°' if and only if

o' = eo for € a scalar withe| = 1; in particular, ifG° andG® are conjugate by, o and

7 are both conjugations or both pseudoconjugations. The conjugation can also be defined
on the groupG, g > ogo L.

6.1. Real forms of the classical Lie algebras

We describe the real forms of the classical Lie algebras from this point of view. (see also
[29]).
Linear algebra, sl(S).

1. If o is a conjugation of, then there is an isomorphissh— C" such that goes over
to the standard conjugation @f’. ThenG® =~ sl(n, R). (The conjugation acting on
gl(n, C) gives the real form gk, R).)

2. If o is a pseudoconjugation arigldoes not leave invariant a non-degenerate bilinear
form, then there is an isomorphism ®fvith C", n = 2p such thatr goes over to

* * * *
(Z19 oo sva Zp+lv cee Zzp) = (Zp+l’ LI 7Z2pa _Zlv cee _Zp)~

ThenG? ~ su*(2p). (The pseudoconjugation acting in origyh, C) gives the real form
su*(2p) @ sa(l, 1).)

To see this, it is enough to prove thEft does not leave invariant any non-degenerate
Hermitian form, so it cannot be of the type(su ¢). Suppose that, -) is ag? -invariant,
non-degenerate Hermitian form. Defifg, s2) := (o (s1), s2). Then(, -) is bilinear
andg? -invariant, so it is als@-invariant.

3. The remaining cases, following Cartan’s classification of real forms of simple Lie al-
gebras, are gp, q), where a non-degenerate Hermitian bilinear form is left invariant.
They do not correspond to a conjugation or pseudoconjugatia$y tme space of the
fundamental representation. (The real form @hg(C) is in this case W, g).)

Orthogonal algebra, sa(S). G leaves invariant a non-degenerate, symmetric bilinear form.
We will denote it by(-, -).

1. If o is a conjugation preserving, one can prove that there is an isomorphisn afith
C" such that-, -) goes to the standard form agd to sdp, ¢), p + g = n. Moreover,
all so(p, g) are obtained in this form.
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2. If o is a pseudoconjugation preserviigG® cannot be any of the ¢p, ¢). By Cartan’s
classification, the only other possibility is thaf ~ sG*(2p). There is an isomorphism
of § with C27 such that goes to

* * * *
(Zl9 e ’va Zerl? e ’Zzp) = (ZP+1’ LR 712[7’ _Z17 cee _ZP)'

Symplectic algebra, sp(S). We denote by, -) the symplectic form ors.

1. If o is a conjugation preservirg, it is clear that there is an isomorphismivith C27,
such thatg? ~ sp(2p, R).

2. If o is a pseudoconjugation preserviigthenG® ~ uspp,q),p+q =n=2m, p =
2p’,q = 2q’. All the real forms usfp, ¢) arise in this way. There is an isomorphism of
S with C?7 such that goes to

(Lo s Zms Zmtds oo 2 Zn) P I Ky (@0 2 Tt - 5 Z)s
where
Iy O 0 0
5 ( 0 zmxm>  Kyy= 0 Iyxy 0 0
~ILpxm O ’ 0 0 —Iyxy O
0 0 0 Iyxy

At the end of Section 2.1 we saw that there is a conjugatioi wmen the spinors are
real and a pseudoconjugation when they are quaternionic (both denoted Wie have
a group, @n, C), Sp2p, C) or GL(n, C) acting onS and containing Spit¥/)C. We note
that this group is minimal in the classical group series. If the Lie algélwéthis group is
stable under the conjugation

X oXo !

then the real Lie algebr@® acts onS° and contains the Lie algebra of Spif). We shall
call it the Spin(V)-algebra.

Let B be the space of Spiir)C-invariant bilinear forms or$. Since the representation
on S isirreducible, this space is at most one-dimensional. Let it be one-dimensional and let
o be a conjugation or a pseudoconjugation and/let B. We define a conjugation in the
spaceB as

B — B, vy Y0, u) =yY(o), o).

It is then immediate that we can choogec B such thaty® = . Then if X belongs to
the Lie algebra preserving, so doesr Xo 1.

6.2. Spin(s, r)-algebras

We now determine the real Lie algebras in each case. All the possible cases must be
studied separately. We start with odd dimensions. All dimension and signature relations are
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mod(8). In the following, a relation like Spi) < G for a groupG will mean that the
image of SpirtV) under the spinor representation is in the connected componéntidfe
same applies for the relation Spin) ~ G.

6.2.1. Orthogonal spinorsin odd dimension, Dg = 1,7

Real spinors, po = 1, 7. There is a conjugatiosm on § commuting with SpiV). Then
Spin(V) € SO(S?) ~ SO(p, ¢q). To determinep andg, we look at the embedding of the
maximal compact subgroup of Sigin) into SQ(p) x SO(g). We have three cases:

1. If p = D (s ort is zero), SpiiV) is compact and it is embedded in the compact
orthogonal group,

Spin(V) € S0P P/2 Ry,

SO p or g is zero. This is clear since the lowest dimensional spinor type representation
of Spin(V) is 2(P—D/2,

2. If s ort is 1, then the maximal compact subgroup of $piR) is SpinV?~1). Lete
be the non-trivial central element of Spi”) which maps to the identity under the
homomorphism SpifV ?) — SO(V?). Under the injection

Spin(V?) — SQ(87) =~ SOp, ¢),
the central element maps to—Z,,. The compact subgroup of Spin?) maps into
the maximal compact subgroup of §8) ¢), so that

Spin(V”~1) — S0(p) x SOg).
But the dimension of any spinor type representation of 8pftr?) is bigger or equal
than 2P~1/2-1_Sinces maps to-Z, ® —Z,, both maps

SpinvP1) - So(p) and Spitv? 1) — SOg)

are spinor type representations. It follows thaty > 2(°P~D/2-1 50 p = 4 =
2(D—1)/2—1_ So

Spin(V?) c so2(P~b/2-1 o(D-1/2-1y

3. If s, t > 2, the maximal compact subgroup of SEitP) is Spin(s) x Spin(r)/(e; = &),
whereg; andeg; are the central elements in Spihn and Spirit), respectively, and they
must be identified witlz. The embedding of the maximal compact subgroup must be

Spin(s) x Spin(t)

Ey = &t

— SO(p) x SAq).

The spinor type representation of Sginx Spin(r)/(e; = &) of minimal dimension
is 26-D/2 @ 21/2-1if 5 is odd and even (only with a tensor product representation is

possible to identifye; ande;). For the same reason that in (2), we have fhat g =
2(D—1)/2—1_ So

Spin(V) € SOP-D/2-1 o(D-1)/2-1)



120 R. D’Auria et al./ Journal of Geometry and Physics 40 (2001) 101-129
Low dimensional examples are
Spin(4, 3) C S04, 4), Spin(8, 1) ¢ SQ(8, 8).

We give now a more complicated example. Consider the group(B)if). The spinor
representation i256, and should be embedded in the vector representation ¢p.S0Q,
p + g = 256. We have the following decomposition

256 - RN 4He3R27,4.
Spin(12) x Spin(5)

It follows that p = ¢ = 128, so the group will be SQ28 128).

Note that the representations of S@i#) and Spir{5) are quaternionic separately, but
when tensoring them a reality condition can be imposed.

Since there is no symmetric morphissi® S — A2 one cannot construct in this case a
simple superalgebra containing the orthogonal group.

Quaternionic spinors, pg = 3, 5. We have that Spiiy) commutes with a pseudoconju-
gation onS. It then follows that

Spin(V) € SO*(2P~D/2),
A low dimensional example is
Spin(6, 1) c ST*(8), Spin(5, 2) c ST(8).

We explicitly compute another example, the group $pin5) whose quaternionic spinor
representation i$28. We have the following decomposition:

128 — (167,49 @ (167, 4).
Spin(10) x Spin(5)

6.2.2. Symplectic spinorsin odd dimension, Dg = 3,5
Real spinors, pg = 1, 7. Since there is a conjugation commuting with Fpin,

Spin(v) € Sp2P~Y/2 R).
We have the low dimensional examples
Spin(2, 1) ~ SL(2, R), Spin3, 2) >~ Sp4, R).

Quaternionic spinors, po = 3,5. SpinNV) commutes with a pseudoconjugation, so
Spin(V) € USp(p, q). We have three cases,

1. If s orz is zero, then Spi(¥/) is compact and
Spin(V) € USp2P~172),
Low dimensional examples are

Spin3) ~ SU2),  Spin(5) ~ USp4).
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2. If s or r are 1, then the maximal compact subgroup is 8pitr1) is embedded in
USp(p) x USp(g). The same reasoning as in the orthogonal case can be applied here,
andp = g = 2(P-D/2-1 50

Spin(V) c USpP~b/2=1 o(b-D/2—1y
Low dimensional examples are
Spin(4, 1) ~ USp(2, 2).
3. Ifs,t > 2, then
Spin(s) x Spin(r)

Ey = &t

— USp(p) x USp(g).

As before,p = g = 2(P~D/2=1 and so
Spin(V) € uspRP-D/2-1 (P-1/2-1)

We analyze now the even dimensional cases.

6.2.3. Orthogonal spinorsin even dimensions, Do = 0

Real spinors, po = 0. The group SpifW)* (projections of SpiaV) with the chiral or
Weyl representations) commutes with a conjugation. Using the same reasoning as in the
odd case, we have that for a compact group

Spin(V)* c soP/? 1.
An example of this is Spif8) ~ SO(8).2 For a non-compact group we have
Spin(V)® c S0(2P/272 2P/2=2),

as for example Spi@, 4) ~ SO(4, 4).
Quaternionic spinors, pp = 4. We note that andr are both even and that neither can be
zero. SpiriV)* commutes with a pseudoconjugation, so

Spin(V)* < SO 2P/,

An example is Spi(b, 2) ~ SO*(8).

Complex spinors, pg = 2,6. s andr must be bigger than zero. Spin)* does not
commute with a conjugation or pseudoconjugation, since it is not real nor quaternionic. It
follows that there is no real form of 3@°/2-1, C) containing SpiV)*. We have instead,
using [28]

Spin(V)* c sO2P/% 1 C)p,

whichis also asimple real group. (The suffik*means that the complex group is considered
as areal Lie group.) It cannot be seen as a real form of any complex simple Lie group [29].
As an example,

Spin(7, 1)  SO®8, C).

2 Notice that forD = 8 one has the phenomenon of triality.
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6.2.4. Symplectic spinorsin even dimensions, Do = 4
Real spinors, pop = 0. p andg are both even and neither can be zero. We have

Spin(V)* < Sp2P/21 R).
The lowest dimensional case is not simple,
Spin(2, 2) >~ Sp2, R) x Sp(2, R).

Quaternionic spinors, pg = 4. SpinV)* commute with a pseudoconjugation, so Spin
(V) CUSp(p, q), p + g = 2P/2-1, Again, the lowest dimensional case is semisimple,

Spin(4) ~ SU(2) x SU(2).
If s ort are zero we are in the compact case and
Spin(V)* < usp2P/2-1),

The other possible case sst > 0, and thens,t > 4. As in the even case, we have
p=gq= 2D/272,

Spin(V)* € USp(2P/2-2 2P/2-2),

Complex spinors, pg = 2, 6. As in the orthogonal case, no real form of(8fy2-1, C)
containing SpinV)* exists. We have the embedding

Spin(V)* < Sp2”/% 1, C)p.
An example is

Spin(3, 1) = Sp(2, C)g ~ SL(2, O)R.
6.2.5. Linear spinors, Dg = 2, 6

Real spinors, pg = 0. SpinV)* commutes with a conjugation, so one has an embedding
into the standard real form of the linear group,

Spin(V)* c SL2P/2 1 R).

As an example, we have SgB) 3)* ~ SL(4, R).

Quaternionic spinors, po = 4. The representatiorst are dual to each other and they
commute with a pseudoconjugation. They leave no bilinear form invariant. If there were an
invariant Hermitian form-, -) then one could define an invariant bilinear form:

(s1, 2) = (051, 52).
So the only possibility is
Spin(V)* < su*(2P/?-1),

A low dimension example is Sp{g, 1) >~ SU*(4).
Complex spinors, po = 2, 6. We will denote by(-, -) the Spir(V)-invariant pairing
betweenS— andS™. We remind that o = ST @ S~ there is a conjugatios commuting
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with the action of SpinV) (see Section 2). It satisfies(S*) = SF, so we can define a
Spin(V)*-invariant sesquilinear form osit,

ooy () o + oot
(s1,55)=1(0(s]),55), s €8".

By irreducibility of the action of SpiV)*, the space of invariant sesquilinear forms is
one-dimensional. We can choose an Hermitian form as a basis, so it follows that

Spin(V)* < SU(p, ¢).

If s or ¢ are zero (compact case), then we have that > 2°/2-1, so eitherp or g are zero
and

Spin(V)* < su@eP/? .

If neither p nor g is zero, therp, g > 2 and even. We have that the embedding of the
maximal compact subgroup must be

Spin(p) x Spin(g)

Ep = &q

C S(U(p) x U(g)).

Sop,q > 2r/271 x 24/2=1 — 2D/2-2 |t follows that
Spin(V)* < SU@2P/?-2 2P/2-2)
We have the low dimensional examples

Spin6) ~ SU4),  Spin(4, 2) ~ SU(2, 2).

7. Spin(V) superalgebras

We now consider the embedding of SN in simple real superalgebras. We require in
general that the odd generators are in a real spinor representation ¢¥ sdimthe cases
Do = 2,6, pg = 0, 4 we have to allow the two independent irreducible representatians,
andS~ in the superalgebra, since the relevant morphism is

ST®S™ — A2

The algebra is then non-chiral.

We first consider minimal superalgebras, i.e. those with the minimal even subalgebra.
From the classification of simple superalgebras [30,31] one obtains the results listed in
Table 7.

We note that the even part of the minimal superalgebra contains th€VSpafgebra
obtained in Section 6.2 as a simple factor. For all quaternionic cages; 3,4,5, a
second simple factor S@) or SO (2) is present. For the linear cases there is an additional
non-simple factor, S@, 1) or U(1), as discussed in Section 6.2.

For D = 7 andp = 3 there is actually a smaller superalgebra, the exceptional superalge-
bra f (4) with bosonic part spi(b, 2) x su(2). The superalgebra appearing in Table 7 belongs
to the classical series and its even part ig8px su(2), being sé(8) the Spin(5, 2)-algebra.
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Table 7

Minimal Spin(V) superalgebras
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Do 00 Spin(V) algebra SpiaV) superalgebra
1,7 1,7 s¢2(P—3/2 2(D=3)/2)

1,7 3,5 s6(2(P-D/2) osp2(P—D/2y*|2)

3,5 1,7 sp2P—D/2 R) osp(1[2(P—D/2 R)

3, 5 37 5 USpZ(D_S)/Z, 2(D—3)/2) OSK2*|2(0—3)/2’ 2(D—3)/2
0 0 qu(D74)/2, 2(D74)/2)

0 2,6 sq2(P—2/2 )R

0 4 sd (2(P-2/2) osp2(P—2/2)%|2)

2,6 0 s[2(P-2/2 R) sl(2P-2/2)1)

2,6 2,6 sz(D—é‘v)/Z’ 2(D—4)/2) SLKz(D—Al)/Z’ 2(D74)/2‘1)
2,6 4 st (2(P—2/2y) su2(P=2/2yx|2)

4 0 sp2P-2/2 R) osp(1]2(P—2/2 R)

4 2,6 sp2(P-2/2 )R osp(1]2(P-2/2 )

4 4 usmz(D74)/27 2(074)/2) OSF(Z*|2(D74)/2, 2(D74)/2

Since we are considering minimal simple superalgebras, there are some terms in the
anticommutator that in principle are allowed morphisms but that do not appear. One can

see that these are

Do=2.6, pg=0,246 S*@5* > A%,

k

Do=4, pp=0,26 St@s — Y A%,

k

Do=1,7, po=3,5, S®S—>ZA4",

k0

Do=0, po=4, S+®S+—>ZA4k,
k0
Keeping the same number of odd generators, the maximal simple superalgebra contain-
ing Spin(V) is an orthosymplectic algebra with Spin) c Sp(2x, R), being 2: the real
dimension ofS. The various cases are displayed in Table 8. We note that the minimal
superalgebra is not a subalgebra of the maximal one, although it is so for the bosonic parts.

Table 8

Maximal SpinV) superalgebras

Do 00 Orthosymplectic
3,5, 1,7 ospl|2(P-D/2 R
1,7 3,5 ospl|2(P+D/2 Ry
0 4 osf1|2P/2, R)

4 0 os1|2(P—2/2 R)
4 2,6 osp1]|2P/2, R)
2,6 0 ospl1|2P/2, R)
2,6 4 osp1|2(P+2/2 R)
2,6 2,6 ospl|2P/2 R)




R. D’Auria et al./ Journal of Geometry and Physics 40 (2001) 101-129 125

Tables 7 and 8 show that there are 12 (mod(8)iandp) superalgebras fab even and
8 mod(8) superalgebras f@r odd, in correspondence with Table 5.

8. Summary

In this paper we have considered superalgebras containing space—time supersymmetry
in arbitrary dimensions and with arbitrary signature. In particidadimensional super
conformal algebras give, by Inoni—Wigner contraction, super translation algebras with
central charges idD + 1) dimensions. They also contaid-dimensional super Poincaré
algebras as subalgebras. The maximal central extension of the Poincaré superalgebra can
be obtained by contraction of the @&{Pn, R) superalgebra whereis related to the space
dimensions according to (8).

In Table 9 we report these superalgebras for a physical space—time of sigiatutel),

D =3, ...,12. Thefirst column (Lorentz) is the supersymmetric extension of the orthogo-
nal algebra s@ — 1, 1). The second column (Conformal) is the supersymmetric extension
of the conformal algebra in dimensidp, sa(D, 2). The third column (Orthosymplectic)

is the superalgebra that by contraction gives the maximal central extension of the super
translation algebra in dimensidd. Note that the same algebras appeaPin= 3, 11 and

in D = 4, 12, owing to the mod(8) periodicity.

Note that the Poincaré supersymmetries obtained by contractions of the orthosymplectic
algebras in Table 9 are non-chiral for = 6, 10 and areV = 2 for D = 8,9. We can
compare Table 9 with Table 7 of Ref. [3] dealing with = 10, 11, 12. We find general
agreement although in Ref. [3] the real forms of the supergroups were not worked out.
Furthermore in the case of Lorentz superalgebr®irs= 12 our analysis shows that the
result is ospl|32, C). Note that inD = 4 we get both, the Wess—Zumind = 1 super
conformal algebra [36] and by contraction of ¢5d, R), the Poincaré superalgebra with
the domain wall central charge [37,38].

It is worthwhile to mention that from our tables we can retrieve the super conformal
algebras that do not violate the Coleman—Mandula [32] theorem and its supersymmetric
version, the Haag—-Lopusizsky—Sohnius theorem [33]. These state that the even part of

Table 9

Supersymmetric extensions of space—time groups

D Lorentz Conformal Orthosymplectic
3 osp(1)2, R) osp1/4, R) osp1i2, R)
4 osf1|2, C) suw2, 2|1) osp(1/4, R)
5 os[8*|2) osp1/8, R)
6 su4*|2) 0sp(8*|2) osp(1/16, R)
7 osp8*|2) 0sp(16%|2) osp(1/16, R)
8 sus, 8|1) osp(1/32, R)
9 osp1|32, R) osp(1/32, R)

10 sk16/1) osp1|32, R) osp(1|32, R)

11 osf1|32, R) osp(1/64, R) osp(132, R)

12 0sf1|32, C) su32, 32/1) 0sp(1|64, R)
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the superalgebra should be given by the sum of the space—time symmetry algebra and an
internal symmetry algebra. It is immediately seen that this happens only fer3, 4, 6.
Indeed, this occurs because of the following isomorphisms:

SO3,2) ~ Sp4,R),  SO4,2) ~SU2,2), SOB,2) ~ SO 8).

TheD = 5caseis also allowed if we replace the &ij2) superalgebra with the exceptional
superalgebrd (4). The first departure occursBt= 7, where the conformal group $Q 2)
must be embedded in 3Q6) to find a supersymmetric extension.
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Appendix A

Some embeddings of real forms of non-compact groups which have been used through

the text are given below.

SOAp +4,0r D SAp, q), SO2n, Or D SO (2n), SOn,n) > SAn, O)g,

SO(n,n) D SL(n, R)xSO(1, 1) =GL(n,R), SO(4n, 4n) D SU(2) x Usp(2n, 2n),

SO*(2p +29) D SU(p, q) x U(D), SO (2n) D SQ, O)R,

SO (4n) D SU*(2n) x SO(1, 1), Sp2p + 29, C)r D Usp(2p, 2g),

Spi2p +29,R) D U(p,q), Sp2n,R) D GL®#,R), Spdn,R) D Sp(2n, O)g,

Sp(dn, R) D SU(2) x SO*(2n), Usp(2n, 2n) D SU"(2n) x SQ(1, 1).

Appendix B
We give explicitly the decomposition of the tensor product represent&ti®ns. The
Clifford algebra has &, grading,
C(s,t) =CH (s, ) ®C (s,1),
where

Cts, 1) = ZAZk, C (s, 1) = ZAZI‘“.

k k
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Table 10
Symmetries of gamma matrices fbreven
Do=0 Dg=2 Dg=4 Do=6
Ao + + - ¥
A + + F -
Az - F + +
Az F - + +

D odd. C* carry isomorphic representations of S@irr), sinceA* ~ AP—*. We can
consider onhC*. We have then

Ct=Ap+ A, Ag= ZA4k, Ay = ZAM"FZ.
k k
Form Table 3 it follows that the morphisms iy are symmetric foiDg = 1, 7 and anti-

symmetric forDg = 3, 5. A2 is symmetric forDg = 3, 5 and antisymmetric fobg = 1, 7.
D even. C* is not isomorphic t&€ .

Ct=Ag+Ax, Ap= ZA4k, Ay = ZA4k+2,

k k
CC=A1+A3, A= ZA4k+l, Az = ZA4k+3.
k k

The symmetry properties are given in Table 10.
+ means symmetric and antisymmetricA+ and ¥ are symmetric or antisymmetric,
respectively, depending on the choice of the charge conjugation matrix (see Section 2.2).
The morphisms are

StTest—ct, D=04, ST®sST—>C, D=26,
ST®SsT—>Ct, D=206, ST®ST—-C, D=0,4

The Spin(V)-algebrais the moduld,. The compact generators for the case of Minkowskian
signaturg D —1, 1), are given by the space like components of the even generaigrs,,
i; =1,..., D — 1. The maximal compact subgroups are

u(l)
SU2)

SU2) x SU2)
USp4)

U4)

sQ8)

SQ8) x SOB8)
sSq16)

U(16)
USp32).

Il
P ©O©OoO~NOOU AW

o

CAvEVAvAvEvEvRAvRwRG)
Il |

=

=

|
=
N

This is in agreement with Table 7.
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